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In this letter, we discuss a versatile, fully-reconfigurable experimental platform for the inves-
tigation of phononic phenomena in metamaterial architectures. The approach revolves around
the use of 3D laser vibrometry to reconstruct global and local wavefield features in specimens
obtained through simple arrangements of LEGO® bricks on a thin baseplate. The agility by
which it is possible to reconfigure the brick patterns into a nearly endless spectrum of topologies
makes this an effective approach for rapid experimental proof of concept, as well as a pow-
erful didactic tool, in the arena of phononic crystals and metamaterials engineering. We use
our platform to provide a compelling visual illustration of important spatial wave manipulation
effects (waveguiding and seismic isolation), and to elucidate fundamental dichotomies between
Bragg-based and locally resonant bandgap mechanisms.

Over the past two decades, acousto-elastic phononic crys-
tals and metamaterials have received increasing attention
due to their unique wave manipulation capabilities. Per-
haps the most well-known property is the ability to open
phononic bandgaps [1–5], i.e., frequency intervals of forbid-
den wave propagation. Another distinctive feature is the
frequency-dependent anisotropy (or directivity) observed in
their spatial wave patterns [6–8] and the ability to feature
a negative refractive index [9–11]. A number of metamate-
rial architectures have also been proposed to design acoustic
lenses [12–14] and attain subwavelength imaging [15–17].

In recent years, the field of phononics has seen a significant
increase in the amount of experimental work [18]. In the
realm of metamaterials design, the need for experiments is
pressing on two levels. At the conceptual development stage,
it is beneficial to rely on a set of fast and economical, yet
accurate experiments to obtain quick proof of concept, or to
compare and rank multiple candidate configurations. At the
later stages of the process, more precise, ad hoc experiments
are required to fully characterize the selected configuration
and to verify its actual implementability as a device. For
proof of concept, it is often too costly and time consuming
to work with specimens fabricated with advanced manufac-
turing methods, especially when a large number of configu-
rations must be tested; it may be convenient to work with
laboratory materials characterized by low cost, fast manu-
facturing time and high reconfigurability. These attributes
are also crucial in the development of prototypes for didactic
demonstrations. 3D-printed materials, for example, display
many of these characteristics; however, they are typically

affected by unreliable mechanical properties and high geo-
metric variability; moreover, their response is often tainted
by high levels of damping that are detrimental to the estab-
lishment of noise-free wavefields.

Inspired by these considerations, we here explore a versa-
tile platform for rapid verification of phononic phenomena in
metamaterial architectures, based on the reversible assembly
of patterns of LEGO® bricks on a thin baseplate. LEGO®

components have been widely used, especially for didactic
purposes, in a variety of scientific environments, including
robotics [19], biological sciences [20, 21] and physics [22, 23].
In our approach, bricks of different size and shape can be
placed at designated locations on a baseplate as to produce a
variety of periodic or disordered stub patterns with different
length scales. Thanks to the non-permanent brick-plate con-
tacts, it is possible to seamlessly transition between different
topologies, effectively switching between radically different
tests, in a matter of minutes. Note that the acrylonitrile bu-
tadiene styrene (ABS) baseplate, which serves as the wave
propagation support, displays relatively low viscosity, which
results in low damping and moderate wave attenuation.

For our measurements, we rely on the sensing flexibility of
a 3D Scanning Laser Doppler Vibrometer (SLDV), which al-
lows simultaneous in-plane and out-of-plane wavefield recon-
struction. Thanks to their sensitivity and frequency band-
width, and in light of the benefits of non-contact sensing,
laser vibrometers have gained increasing popularity for the
experimental analysis of phononic structures [24–29]. Here,
the scanning vibrometer contributes to the sensing side of
the problem a dimension of reconfigurability that comple-
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ments the flexibility that is achieved, at the specimen fabri-
cation level, by using bricks as building blocks.
Throughout this letter, all the considered topologies

are obtained as assemblies of cylindrical bricks on a
baseplate [30, 31]. The baseplate features periodically-
distributed studs—small cylindrical protuberances where
the bricks can be anchored. The arrangement of studs allows
for several periodic configurations with various lattice con-
stants. Note that the brick-stud contact only relies on fric-
tion: no use of glue (which would undermine agile specimen
reconfiguration) is required. A detail of bricks and base-
plate is shown in Fig. 1a. In Fig. 1b we show the scanned

FIGURE 1: Experimental setup. (a) Detail of the base-
plate with cylindrical bricks. (b) Scanned surface (backside
of the baseplate) and shaker. (c) Front view of the speci-
men with the three scanning heads of the 3D-SLDV in the
background.

surface (the backside of the plate), coated with a thin layer
of reflective paint to increase the quality of the optical sig-
nal. The excitation is imparted using a Bruel & Kjaer Type
4809 shaker (also shown in Fig. 1b), with a 0–20 kHz band-
width. Sensing is performed by scanning the baseplate with
a Polytec PSV-400-3D Scanning Laser Doppler Vibrome-
ter (Fig. 1c). To probe the response over broad frequency
ranges, we excite the specimen with a pseudorandom wave-
form featuring a flat power spectrum over the frequency
range of interest. To improve the signal-to-noise ratio, mea-
surements at each scanned location are repeated 20 times
and averaged. A low-pass filter is used to cut-off all spuri-
ous features in the signal above 20 kHz [32].
Our first objective is to use our combined fabrication

and sensing platform to visually elucidate the phononic
bandgap phenomenon. Phononic bandgaps are frequency
intervals in which wave propagation is forbidden. The gen-
eration of bandgaps can be traced back to two main mecha-
nisms: Bragg scattering and locally resonant effects. Bragg
bandgaps are due to the destructive interference between
cascades of waves scattered at the internal interfaces in the
material. They require periodicity in the structure and man-

ifest when the wavelength of excitation approaches the char-
acteristic size of the unit cell. Locally resonant bandgaps are
a byproduct of energy-localization mechanisms; they take
place when the frequency of excitation approaches the res-
onance frequencies of some “microstructural” elements [5].
They are subwavelength in nature, i.e. they arise when the
wavelengths are about one order of magnitude larger than
the unit cell size. In the following, we leverage the versatility
of our experimental setup to illustrate the duality between
these mechanisms.

Our first specimen comprises 420 bricks arranged as shown
in Figs. 2a and b. For convenience, we label this topol-
ogy “dense”. Fig. 2c shows the frequency response function
(FRF) calculated from surface measurements using the vi-
brometer in the 0–14 kHz range; the average out-of-plane ve-
locity vPC

z
measured at the scan points inside the brick-filled

area (the actual phononic crystal zone) is divided by the av-
erage velocity vbase

z
measured along the bottom edge of the

scanned surface. We observe two bandgaps (shaded areas):
a narrow band approximately in the 1.8–2.6 kHz range, and
a wider one approximately in the 5.5–11 kHz range. Snap-
shots of the steady-state response at selected frequencies are
shown in Figs. 2d–h. In all plots, the velocity ranges from
−0.4 vbase

z,max to 0.4 vbase
z,max, where v

base
z,max is the maximum am-

plitude recorded along the bottom edge of the scanned re-
gion at each frequency. The wavefield response provides
visual evidence of both bandgaps: Figs. 2d, f, h, correspond-
ing to propagation regions, feature appreciable oscillations
over the entire scanned area; Figs. 2e and g, corresponding
to attenuation zones, feature nearly no motion in the crys-
tal region (bordered by the dashed line). A comparison with
the FRF of a pristine baseplate, confirming the fact that the
bandgaps are due to the presence of the brick arrangement,
is given in the supplemental material (SM) [32].

To investigate the dual nature of the observed bandgaps,
we test their robustness against changes in topology. Here
we invoke the notion that Bragg bandgaps are sensitive to
changes in lattice spacing and to relaxation of the periodic-
ity, while locally resonant bandgaps only depend upon the
availability of resonating elements. In Fig. 3, the reference
dense topology (Figs. 3a and b) is compared to two other
topologies that are assembled via rapid reconfiguration of
the brick pattern. The configuration in Fig. 3c is obtained
by downsampling (by half) the original topology while re-
taining a periodic arrangement. The corresponding FRF
in Fig. 3d still displays two main bandgaps: the gap in the
neighborhood of 2.2 kHz is preserved, albeit narrower than in
the dense topology; the larger gap has shifted towards lower
frequencies (3.5–6 kHz range, approximately). Shifting to-
wards lower frequencies (longer wavelengths) in response to
increases in lattice constant can be seen as the signature
of Bragg scattering, which indeed requires compatibility be-
tween unit cell size and wavelength. Fig. 3e, in contrast, is
obtained by rearranging the 210 bricks into a (MATLAB-
generated) disordered pattern. The FRF in Fig. 3f high-
lights the survival of the 2.2 kHz bandgap while the higher
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FIGURE 2: Bandgap analysis for a dense periodic brick topology. (a,b) Specimen with detail of the brick arrangement. (c)
Frequency response function (average out-of-plane velocity normalized by the average value measured along the bottom edge).
The shaded areas highlight the bandgap regions. (d-h) Laser-acquired wavefields sampled at five reference frequencies; the
dashed lines delimit the region occupied by the bricks. (d) 1.5 kHz. (e) 2.25 kHz. (f) 3 kHz. (g) 7.25 kHz. (h) 13 kHz.

gap has vanished. The persistence of the low frequency gap
across all topologies highlights its periodicity-independence
and hints at underlying locally resonant mechanisms—an
aspect recently investigated by Rupin et al. [29]. The in-
tensity of the resonant mechanisms depends on the number
of resonators that can contribute to energy trapping. This
confirms the reduction in the first bandgap width in going
from the case of Fig. 3a to those of Figs. 3c, e. In SM [32] we
also discuss the influence of the resonators’ height on both
locally resonant and Bragg bandgaps.

To substantiate our hypothesis regarding the locally res-
onant nature of the 2.2 kHz bandgap, we attempt to recon-
struct experimentally the vibrational behavior of a single
brick (mounted at the center of the baseplate) at different
frequencies falling inside and outside the bandgap deemed
to be locally resonant; a detail of the brick, coated in a thin
layer of reflective paint, is shown in Fig. 4a. For this task,
we define a dense cylindrical scan grid on the surface of the
brick, as well as a coarser rectangular grid on the region
of the plate immediately surrounding the brick. The color
given to the scanned points is proportional to the RMS of the
three measured velocity components; at each frequency, the
velocity is normalized by the maximum velocity recorded
over the entire scanned region at that frequency, to high-
light the relative motion between brick and baseplate. The
black dots mark the original position of the scan points.
Fig. 4b shows the brick-and-plate motion at 1000Hz (before
the bandgap). We can see that the brick moves in the out-
of-plane direction in phase with the plate substrate, which
undergoes significant deformation. Fig. 4c pinpoints a fre-
quency near the onset of the bandgap, 1950Hz: the brick
undergoes large tilting motion, while the points on the plate

FIGURE 3: Effects of scale coarsening and periodicity re-
laxation. (a) Dense periodic topology (420 bricks). (b)
FRF for the topology in (a). (c) Coarse periodic topology
(210 bricks). (d) FRF for the topology in (c). (e) Random
assembly of 210 bricks. (f) FRF for the topology in (e).

are approximately still. Fig. 4d represents a post-gap fre-
quency (3000Hz) where, once again, we observe significant
motion of both the plate and the brick. We conclude that
we only observe large relative motion between stub and sub-
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strate at the onset of the bandgap: this provides evidence of
energy trapping and highlights the locally resonant nature
of the bandgap.

FIGURE 4: Experimental reconstruction of the motion of a
cylindrical brick at three frequencies in the neighborhood of
the locally resonant bandgap. (a) Detail of the brick. (b)
Motion at 1000Hz, before the presumed bandgap region.
(b) Motion at 1950 Hz, near the onset of the bandgap. (d)
Motion at 3000 Hz, above the bandgap.

We can further exploit the reconfigurability of our spec-
imens to illustrate (using the same brick set) a variety of
spatial manipulation phenomena, such as waveguiding and
seismic isolation, at different wavelengths. The first topol-
ogy, shown in Fig. 5a, is obtained by assembling a dense
square phononic crystal and by introducing a two-unit-cell
wide snake-like defect path. Defect paths are known to act
as waveguides when the frequency of excitation falls inside
a bandgap for the crystal. Consistently with the bandgap
duality discussed above, waveguiding is attainable for wave-
lengths that are comparable [33–36] or larger [26, 37] than
the unit cell. In Fig. 5b we obtain long-wavelength waveg-
uiding (at 2512.5Hz), while in Fig. 5c we report waveguiding
at shorter wavelengths (at 7000Hz, inside the Bragg gap).

We then proceed to rearrange the bricks into the topol-
ogy shown in Fig. 5d, which implements a phononic crys-
tal realization of the University of Minnesota M logo. The
wavefields obtained at 2362.5Hz and 7000Hz are shown in
Fig. 5e and Fig. 5f, respectively. We can see how the energy
is predominantly confined outside the crystal region; this ef-
fect is especially pronounced in the Bragg bandgap, where
the response decays inside the M contour within 1–2 cell
layers. This configuration, in conjunction with the ability
to scan both interior and exterior of the crystal, provides an
eloquent lab demonstration of the potentials of PCs for vi-
bration and seismic isolation [38, 39]. In SM [32], we discuss
two additional crystal topologies to emphasize the breadth

FIGURE 5: Experimental evidence of waveguiding and iso-
lation effects. (a) Snake-like waveguide. (b) Waveguide re-
sponse at 2512.5 Hz. (c) Waveguide response at 7000Hz.
(d) Metamaterial realization of the Minnesota M logo. (e)
Image of the M at 2362.5 Hz. (f) Image of the M at 7000Hz.

of effects that can be verified using the proposed platform.

As a summary, in this letter we have illustrated how,
through a simple assembly of LEGO® bricks, we can gen-
erate metamaterial architectures with locally resonant and
Bragg-based bandgaps. The reconfigurability of the brick
patterns, together with the availability of bricks of virtually
any size and shape, can be leveraged to assemble and test a
plethora of metamaterial architectures, thus serving as a ver-
satile experimental platform for proof of concept lab tests.
We believe that the intuitive and tangible nature of toy-
based specimens, along with the visualization capabilities of
laser sensing, can provide a dimension of intuitiveness to the
field of experimental phononics and act as perfect platform
for far-reaching teaching and outreach activities in the realm
of wave mechanics and metamaterials engineering.

The inspiration for this work sprouted from ideas origi-
nated during the organization of outreach activities within
a project sponsored by the National Science Foundation
(grant CMMI-1266089). We are particularly indebted to
Nathan Bausman and Davide Cardella for their insight and
assistance with the experiment setup. We also wish to thank
Jeff Druce and R. Ganesh for their valuable input.
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Supplemental material (SM)

Details on the experimental setup

To facilitate the reproduction of our experimental results, we here report details regarding the data acquisition settings
we chose in the Polytec PSV 9.0 Acquisition software. The acquisition is performed directly in the frequency domain (the
Fast Fourier Transform is performed automatically within the acquisition system by the software). As already mentioned,
to eliminate non-repeatable noisy features, measurements are repeated 20 times at each scanned location. We also resort
to a low-pass filter with cutoff at 23 kHz. As far as the vibrometer channel is concerned, we select a 5V range and AC
coupling. We acquire in the 0–20 kHz frequency range, and we concentrate on the 0–14 kHz band in postprocessing. The
sampling frequency is fs = 51.2 kHz and the number of FFT lines is 1600, resulting in a frequency resolution of 12.5Hz.
The selected velocity decoder is the digital VD-08-10mm/s/V, that allows acquisition up to 20 kHz. The excitation is a
pseudorandom waveform with maximum amplitude of 650mV. The excitation signal is amplified using a Bruel & Kjaer
Type 2718 Power Amplifier, with gain set to 30 dB.

Wave characterization of the baseplate

To further confirm the brick-dependent nature of the bandgaps discussed throughout this work, we analyze the response
of the baseplate with no bricks attached. The plate and a detail of the studs arrangement is shown in Figs. S1a and b. In

FIGURE S1: Steady-state analysis of the brick-free baseplate. (a,b) Baseplate and detail of the studs. (c) Frequency response
function (average out-of-plane velocity normalized by the average value measured along the bottom edge). (d-h) Laser-acquired
wavefields sampled at the same five reference frequencies analyzed in Figs. 2d–h. (d) 1.5 kHz. (e) 2.25 kHz. (f) 3 kHz. (g)
7.25 kHz. (h) 13 kHz.

Fig. S1c we show the frequency response function of the baseplate (for the FRF we use the same output metric used for
the other topologies across the manuscript). Once we remove the bricks, we clearly see that no bandgaps are present in the
0–14 kHz range. This aspect is corroborated by the snapshots of the plate’s steady-state response shown in Figs. S1d–h:
the structure is able to propagate waves at all frequencies, including those that, in the dense topology, corresponded to
bandgap regions (Figs. S1e and g, corresponding to 2.25 kHz and 7.25 kHz, respectively). Note that, due to the presence
of the small cylindrical studs, the baseplate itself is a periodic structure; however, we did not detect any stud-related gap
in the considered frequency range, which suggests that the amplitude of the associated scattering events is negligible.
We now use the response of the pristine plate to visually quantify the wavelength of plate waves having frequencies

that fall inside bandgaps observed in the dense topology. Note that, for the dense topology, the unit cell characteristic
dimension is a = 1.2 cm. In Fig. S2a we zoom on the baseplate response at 2.25 kHz, corresponding to the locally resonant
gap. Note that in Fig. S2, for visualization purposes, the velocity amplitude bar has been modified to range from −vbase

z,max

to vbase
z,max. From the drawn arrow, we can see that the characteristic wavelength of the response can be estimated to

be λ ≃ 5.4 cm, a value corresponding to about 6 unit cells. In Fig. S2a we report the baseplate response at 7.25 kHz,
corresponding to the Bragg gap. In this case, the estimated wavelength is λ ≃ 2.4 cm, corresponding to 2 unit cells. This
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FIGURE S2: Wavelength identification from the baseplate response. (a) Baseplate response at 2.25 kHz, inside the locally
resonant bandgap of the dense topology. (a) Baseplate response at 7.25 kHz, inside the Bragg bandgap of the dense topology.

result appears to support the notion that locally resonant gaps are subwavelength in nature, while Bragg ones take place
when the wavelength is comparable to the unit cell size.
It is also interesting to briefly discuss the modal characteristics of the wave response of the pristine baseplate. In theory,

we expect two modes to coexist in the low-frequency interval considered in our experiments: the first antisymmetric Lamb
mode, A0, and the first symmetric Lamb mode, S0. However, given the specific excitation configuration (the direction of
actuation is here perpendicular to the plate), the response is dominated by the antisymmetric mode [Rupin et al, Phys.
Rev. Lett. 112, 234301, 2014]. In fact, the A0 characteristics at low frequencies are those of flexural waves, that can be
alternatively captured by plate theory models (e.g. the Kirchhoff model), which in fact entail a single mode corresponding
to the out-of-plane displacement of points on the midplane of the plate. To highlight the mono-modal nature of the plate
response, we report in Fig. S3a a transient wavefield obtained in the pristine baseplate excited with a 5-cycle burst with
carrier frequency 6.75 kHz. This frequency is selected in the middle of the range used in our analysis and can be safely

FIGURE S3: Transient analysis of the pristine baseplate in response to a 5-cycle burst with carrier frequency 6.75 kHz. (a)
Wavefield at t = 0.70ms. (b) 2D-FFT of the wavefield in (a).

considered representative of the plate behavior in the entire low-frequency domain. Note that the experimental setup is
slightly different from the setup used throughout this letter, in terms of specimen clamping, location of excitation and
scan grid selection. To investigate the modes of wave propagation, we compute the 2D-FFT of the wavefield, shown in
Fig. S3b. We can see that the spectral amplitude in the wavenumber space manifests indeed as a largely single-modal
feature, i.e. a ring with radius corresponding to the reciprocal of the wavelength observed in Fig. S3a.

Effect of the resonators’ height on the bandgap behavior

We here investigate the effect of the resonators’ height on the bandgap behavior of the coarse periodic topology shown
in Fig. 3c. In particular, we compare the “single-brick” case, shown again in Fig. S4a, to a “double-brick” case in which
all resonators are made by stacking two bricks on top of each other, as shown in Fig. S4c. Figs. S4b and d represent the
FRFs for the single- and double-brick cases, respectively. A direct comparison of the two plots highlights how the locally
resonant bandgap shifts towards lower frequencies as the resonator height increases. This phenomenon can be explained
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FIGURE S4: Effects of the resonators’ height. (a) Coarse periodic topology with single-brick resonators. (b) FRF for the
topology in (a). (c) Coarse periodic topology with double-brick resonators; a detail of the brick stacking is also shown. (d)
FRF for the topology in (c).

in light of the drop in resonance frequency of the pillar, resulting from the increase in mass moment of inertia due to the
doubling of the mass and length of the resonator. This further confirms the locally resonant nature of the lowest gap
and hints at a rigid tilting motion of the pillars as the dominant resonant mechanism. It is worth noting that the Bragg
bandgap also shifts slightly towards lower frequencies as a consequence of the change in the impedance mismatch between
baseplate and pillars (due to the change in inertial properties of the latter).

Crystal topologies with point defects

We further expand the portfolio of architectures that we can study with this approach by considering two additional
topologies, both obtained by introducing point defects of various sizes within a dense topology. The specimen in Fig. S5a
is obtained by removing a single brick. Its response in the locally resonant bandgap region (Fig. S5b) shows that the

FIGURE S5: Experimental evidence of defect modes in phononic crystals with point defects. (a) Topology with small defect,
(b) its response at 2512.5 Hz and (c) its response at 7000 Hz. (d) Topology with large defect, (e) its response at 2512.5 Hz and
(f) its response at 7000Hz.

defect is not large enough to resolve the energy localization at the corresponding wavelength. In the case of Fig. S5c,
corresponding to the Bragg gap, we can see how the energy localizes at the defect site. Note that, in this set of results,
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we can see a spurious noisy feature in the wavefield data. The persistence of this feature across the frequency spectrum
indicates that this is an artifact of the acquisition process, probably due to a failed laser measurement at one of the scan
points, and not the signature of any abnormal behavior of the structure. The topology in Fig. S5d features a 3× 2 defect,
obtained by removing 6 bricks. In Figs. S5e and f, we can see that the defect is large enough to induce energy localization
in both locally resonant and Bragg bandgap regimes.
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